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SUMMARY 

This paper presents an advanced method for a 2-dimensional analysis of transient natural convection 
by finite element method. The present method, based on stream function-vorticity formulation, could 
get rid of numerical errors and constraint of perpendicular mesh subdivision, since we excluded a finite 
difference approximation of vorticity on no-slip boundaries. A considerable effect of upwind weighting 
function was examined. The method was successfully applied to a problem of natural convection 
around a horizontal hot cylinder. 
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1. INTRODUCTION 

The thermal design of the large tokamak JT-60, which is under construction at JAERI, 
showed some difficulties related to natural convection. When the vacuum vessel is heated up, 
the air flow induced at the surface of the thermal insulator covering the vessel may bring 
troubles with diagnostics and with the electric insulator of the poloidal magnetic field coils, 
located over and around the vessel. Therefore, it is necessary to analyse, in detail, the natural 
convection of air around the vacuum vessel, in order to determine the maximum allowable 
baking and operation temperature and to design heat removing equipments. For this 
purpose, we developed a 2-dimensional finite element code which analyses transient natural 
convection. 

There are two major computational methods for fluid simulation: finite difference method 
(FDM) and finite element method ( E M ) .  Application of FDM to fluid dynamics has been 
studied and established from the early days of computer simulation and many interesting 
results'-3 including those of natural convection have been published. Davis and Mallinson4 
numerically showed the secondary and tertiary flow of natural convection in a rectangular 
cavity which had been experimentally observed by Elder.' Mallinson and Davis6 performed 
3-dimensional computation using what they called the false transient method. Pepper and 
Harris7 and Torrance and Rockett' reported their calculations of axi-symmetric time depen- 
dent problems. However, FDM requires complicated techniques3 for geometrically compli- 
cated problems. Indeed, it will be practically impossible to analyse the natural convection for 
a complicated geometry like that around the JT-60 vacuum vessel by FDM. 
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On the other hand, FEM, whose application to fluid dynamics has been intensively studied 
only in the last ten has the advantage that it can analyse arbitarily shaped regions 
in a uniform manner. As most of the numerical studies of natural convection make the 
Boussinesq approximation which treats the fluid as incompressible, the formulation based on 
stream function and vorticity has conventionally been used for such studies.13 But, such a 
formulation has the disadvantage, for practical application, that the mesh subdivision on 
no-slip boundaries is restricted to be perpendicular for finite difference approximation of 
vorticity on such boundaries.'-ll The restriction obviously reduces practical convenience and 
induces some numerical errors. 

We exclude this restriction by the use of the equation of motion for the stream function 
instead of the vorticity. This method has been successfully applied by Ikenouchi and 
Kimura14 to the Navier-Stokes equation without body force. We extend the method to the 
basic equations of transient natural convection. The equations are discretized by the 
Galerkin method. The advantage of an upwind weighting functiong is also checked. We use 
explicit time integration methods: the Euler method and the 2-step Lax-Wendroff method. 
In order to justify the present method, we compare our numerical result for natural 
convection induced by a hot wall of a closed cavity with the result of Reddy and Satake.13 
We also demonstrate a time dependent evolution of the convective flow induced by a 
horizontal hot cylinder, as the preparation of numerical analysis of the air convection around 
JT-60. 

2. FINITE ELEMENT FORMULATION 

2.1. Basic equations 

It is common to use the Boussinesq approximation for the study of natural convection. The 
approximation treats small deviations of pressure and temperature from their ambient 
values, and the fluid itself is considered to be incompressible. The thermal transport equation 
must be directly coupled with the momentum transport equation, because the buoyancy 
force, caused by the temperature distribution, is the dominant motive force of this system. 
The basic equations of natural convection can be written as follows. 

Momentum transport equation: 

(1) 
a V  1 -+ (V * V)V+- Vp - vV2v+ @gT = 0 
at P 

Equation of incompressibility: 

v - v = 0  

Thermal transport equation: 

(3) 
aT -+ (v * V)T- aV2T = 0 
at 

Although the incompressibility is formally represented by equation (2), density may vary as a 
material property according to the temperature. This way of treating density is indispensable 
for the analysis of problems of gas flows with wide temperature distribution. 

Equation (2) indicates that the velocity can be represented by a vector potential as 

v = v x w  (4) 
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As only two of the three components of velocity are independent in a 2-dimensional analysis, 
we set the following condition on P in order to reduce the number of its degrees of freedom. 

V . P = 0  ( 5 )  
The vorticity vector, defined by 

can be represented in terms of P as 

w = v x v  

w = -v29 
Then the curl of equation (1) gives 

(7) 

(8) 
a 
at 

- - (V2P) + (V * V)W-(O * V)V- v V ~ O +  PVTXg = 0 

Hence, the set of independent variables v, p, and T can be replaced by the set of 9 and T, 
and this considerably economizes computing effort, computer memory and time. 

2.2. Non-dimensional fornulation 

We non-dimensionalize the variables and symbols as 

a a v = L-Iv*, v = uv*, - = L-"-, g = gg* 
at at* 

p = pU2p*, T = (AT)$ + T,, 9 = LUP*, w = L-'Uw* 

Then the basic equations are rewritten as 

(9) 

(10) 

w + v 2 9  = 0  (11) 

a 1 Gr 
at  Re Re 

-- @"P) + (V - v ) ~ -  (UU - v ) ~ - -  v2w+ - ve xg = o 

1 
at Pe 
g+ (v - V)$ -- V28 = 0 

For simplicity the symbol * indicating non-dimensional values will be dropped, hereafter. 

2.3. Two dimensional fornulation 

In Cartesian (x, y, z )  co-ordinates, equations (10)-(12) are reduced, for two dimensional 
plane (x, y )  equations, as follows. Equations (4) and (7) mean that 9 and w can be 
represented by their z -components alone as 

9 = (0,07 +(x, YN, 

v, = a*/ay, 

0 = (0,0, w(x, Y)) 

u, = -a+/ax 

(13) 
Then, equations (4) and (11) give 

a24 a24 
- + y + w = O  
ax2 ay 

Considering the incompressibility and the following relation 

v - (vw) = o ( V  v)+(v * V)w 
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the z -component of equation (1 0) gives 

Similarly, equation (12) gives 

a0 -+- (vxO)+-(u~O)--  a a 1 -+2 a20 8 0  = o  
at ax aY Pe (8x2 a y  ) 

2.4. Boundary conditions 

Many studies, based on stream function-vorticity formulation, use the equation of motion 
of vorticity. Using this formulation, even in FEM studies, not only in FDM ones, some finite 
difference approximations3*".'"~* ' ,' are used for the estimation of the boundary values of 
vorticity. Hence, the mesh subdivision must be perpendicular to such boundaries. One of the 
approximations can be written, for example, as follows.'* 

0, = - 

where subscript i denotes the inner node located on the perpendicular, with the distance of 
An, from the corresponding boundary wall node denoted by the subscript w. It is apparent 
that the approximation induces numerical errors and reduces the practical convenience. 

In order to avoid this difficulty, Ikenouchi and Kimura14 treated the equation of motion of 
the stream function instead of the vorticity, in their study of the Navier-Stokes equation 
without body force. They also used equation (15) only to calculate o of the convection term 
of the momentum transport equation. Therefore, they had to solve no differential equation 
in w, and needed no boundary condition on o, on such no-slip boundaries. 

We extend this method by coupling equation (17) with the thermal transport equation 
(18). Four types of boundary conditions for the stream function and two types for the 
temperature field are used as follows. 

Inlet flow boundary s,: +=& w = ;  (20a) 
No-slip boundary s,: $=$, a+Ian = 0 
Outlet flow boundary S3: d+lan = 0,  awlan = 0 (204 
Isolated no-slip boundary S4: dlC/lds = 0, a+lan = 0 (204 
Temperature prescribed boundary S5: 0 = e  ̂ (214 
Thermal flux prescribed boundary S6: -a0lan = & (21b) 

The boundaries satisfy the following relations. 

s = S' u s2 u s3 u s, = s, u 56 
si n sj = 0 (1 < i < j  <4), s, n s6 = 0 

The right direction of the surface is chosen as that one can see the analysis region on the left 
hand side. Figure 1 schematically shows the relation between V and S1,.  . . , S,. 



NATURAL CONVECTION AROUND A CYLINDER 433 

Figure 1. Schematic diagram of analysis 
region and Row boundaries. V: Analysis 
region, S , :  Inlet flow boundary, S,: No- 
slip boundary, s,: Outlet flow boundary, 
S4: Isolated no-slip boundary. Thermal 
boundaries S ,  (temperature prescribed 
boundary) and S ,  (thermal flux prescribed 
boundary) overlap with boundaries 
s, > . . . , s4 

Similar to Ikenouchi and Kimura,I4 boundary values of weighting functions are set as 
follows. - s,: Jr=o, 4 = 0  (234 

S’L: &=o, 4 = arbitrary W b )  
S,: Jr =constant, 4 = constant (234 
S4: & = constant and arbitrary (23d) 
s g :  e = o ,  (244 
S6: 6 = arbitrary (24b) 

- 

2.5. Discretization with the Galerkin method 

In the mM formulation of fluid flow, it is common to use weak formulations for the 
discretizations of the basic equations. Then, equation (17) is multiplied by a weighting 
function and integrated over the analysis region. Applying Green’s theorem and using 
equation (14) and boundary conditions (20)-(24), we obtain 

The boundary condition on awlan in the second term of the right hand side of equation (25) 
is eliminated on isolated isothermal boundaries (Appendix I). The first term of the right hand 
side of equation (25) is evaluated from the value calculated by equation (15), and needs no 
finite difference approximation. 
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For the matrix formulation, we expand the weighting functions and variables by interpola- 
tion functions N, and Np as follows. 

It is mathematically equivalent to use N, and Np instead of the original variables and 
weighting functions.' Then we obtain the following matrix equation. 

A a P s L p  + Ba@&@% + Cap@, + Dap0, = E, (27) 
In a similar and more straightforward manner, we discretize equations (15) and (18), 
respectively as 

The detailed definitions of the matrices and vectors A,,, . . . , S, are listed in Appendix 11. 

3.  NUMERICAL TECHNIQUES 

We use first order isoparametric interpolation functions. For surface integration, we use 
Radon type 7-points numerical integration which calculates polynomials below 5th order with 
no error, and for line integral we use first order error Gauss-Legendre numerical integration. 

In order to suppress the instability of computation with high Reynolds and Grashoff 
numbers, and to make the calculation efficient, we replace the weighting function N, of 
convection terms Bapv and QaPr by upwind weighting functions' considering the element 
Reynolds and Peclet numbers. For time integration, we use explicit techniques: Euler 
method and 2-step Lax-Wendroff method. Expressing time dependent matrix equations 
generally as 

MU + K(u)U = F (30) 

and supposing that the value of u at the time step n is known, the value of u at the next step 
is calculated by the 2-step Lax-Wendroff method as 

where superscripts n, n + 1, and n +$ indicate the values at the time step n, n + 1, and the 
middle of the time steps IZ and IZ + 1. The computing flow diagram is illustrated by Figure 2. 

4. NUMERICAL RESULTS 

4.1. Natural convection in a closed cavity 

This problem is a recirculatory convection induced by a hot wall with the other wall kept 
to lower temperature, and with top and bottom walls insulated. Calculation was performed 
for Re = lo5 with and without upwind weighting functions. 
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Figure 2. Flow diagram of the computation 

Figures 3(a) and (b) show the isotherms and stream function of the almost stationary 
solution without the use of the upwind weighting function. A similar solution was obtained 
when we used the upwind treatment. 

The two crosses in Figure 3(b) denote the vortex centres of the time independent solutions 
of Reddy and Satake.13 

The calculation of the almost stationary solution needed the physical time of 36s. The 
CPU time and allowable time intervals were 9 min and 5 x 10-2-10-1 s with the upwind 
treatment, and 370 min and 10-3-5 x s without the treatment. Comparing the two 
methods of time integration, we found little difference in calculation efficiency. 

4.2. Natural convection around a horizontal hot cylinder 

As the preparation for the analysis of the convection of air around the JT-60 vacuum 
vessel, we calculated a problem with some resemblance: the natural convection of air 



Figure 3. Almost stationary solution of natural convection in a closed cavity. Induced by the right- 
hand-side hot wall with the other wall kept to be cold (Re=105).  (a) Isotherms of normalized 
temperature. (b) Stream function-two crosses denote the vortex centres of the calculation of Reddy 
and SatakeI3 

Figure 4. Natural convection around a horizontal hot cylinder placed in a rectangular closed cavity. (a) 
Geometry of the analysis region. The left half region is analysed because of the symmetry of the 
problem. The stream function J, is set to be 0 on the boundary except on the line of symmetry 
(hatched line) where J, may vary self-consistently. Convection is induced by the hot cylinder. The 
temperature on the rectangular cavity is 100°C, and the support temperature spatially change from 
100°C to T,, the temperature of the cylinder surface. The line of symmetry is thermally insulated. (b) 
Mesh subdivision and flow vectors of the almost stationary solution with T, = 110°C and Gr = 
0.8 X 10’. (c) Stream function of the almost stationary solution with T- = 110°C and Gr = 0.8 X lo5 
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induced by a horizontal hot cylinder placed in a rectangular closed cavity. Because of the 
symmetry of the geometry? we analysed only the left region illustrated by Figure 4(a). We set 
the boundary value on @ as 0 (no-slip boundary) except on the line of symmetry over the 
cylinder where @ may change self-consistently. The temperature of the rectangular boundary 
is lOO"C, and the temperature on the boundary of the cylinder support is set to spatially 
change from 100°C to T,, the temperature of the cylinder. The line of symmetry of the fluid 
region is thermally isulated. 

Considering the complexity of the problem, we used the upwind treatment. When we set 
T, to be 200"C, the computation diverged after the evolution of initial flow. Hence, we 
divided the temperature difference between the cylinder and the cavity into small increments 
of 1O"C, to obtain a stable computation. The almost stationary solution of the latest 
incremental step was used as the initial condition of the next incremental step. After the 
repetition of the incremental steps, we obtained the almost stationary solution of natural 
convection with T, = 140°C and Gr = 2 X 30'. Figure 4(b) shows the mesh with flow vectors 
of the almost stationary solution with T,= 110°C. We used small mesh subdivision near the 
upper side of the rectangle and the line of symmetry, in order to stabilize the spatial disorder 
of the temperature field which was inevitable with more coarse mesh subdivision. Figure 4(c) 
shows the stream function of the same solution. 

Figures 5(a)-(g) show the time evolution and convergence process of the natural convec- 
tion with T, = 110°C and Gr = 0.8 X 10'. We see the initial evolution of temperature field 
(Figures 5(a), (b)), the formation of a stagnant region of temperature (Figures 5(c)-(e)), and 
the process of temperature diffusion towards the almost stationary solution (Figures 5(f), (g)). 
Figures 6-8 are the isotherms of the almost stationary solutions with T, = 120"C, 130°C and 
140°C respectively. The isotherms show a mushroom-like shape which grows according to 
the increase of Grashoff number and seems to be characteristic of this geometry. Similar 
geometry was analysed computationally and experimentally by Gartling and Nickel1 
(G&N)" with Grashoff number of 4 x  10'. Compared with their isotherms, ours are sharper 
and more complex, partly because our mesh is finer where spatial change of temperature 
field is large. Considering the ambiguity of the holometric photograph of G&N and the 
limitation of our plotter program, our results are almost as the same as that of G&N with 
similar geometry and a little different parameter. 

For numerical computation, we used FACOM M200 at JAERI computer centre. The 
number of iterations and the CPU time, necessary for the almost stationary solution with 
T, = 11O"C, were about 1200 and 15 h, respectively. The time intervals were from s to 
5 x s. According as T, was increased, shorter time intervals were necessary. 

5.  CONCLUSIONS 

This paper has presented an advanced method for the analysis of 2-dimensional transient 
natural convection, with arbitrary mesh subdivision on no-slip boundaries. It was confirmed 
that the upwind weighting function suppressed spatial disorder of temperature distribution 
and accelerated the time integration of such highly non-linear problems as natural convec- 
tion. 

We are intending to apply the present method to the natural convection around the 
vacuum vessel of JT-60, by extending the method to cylindrical problems and including some 
additional boundary conditions. 
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Figure 6. Almost stationary solution with T, = 120°C and Gr = 1.5 X lo”. 
Isotherms which have the values from 100°C (line 1) to 120°C (line 11) with equal 
intervals 

Figure 7. Almost stationary solution with T, = 130°C and Gr = 2 x 10”. Isotherms 
which have the values from 100°C (line 1) to  130°C (line 11) with equal intervals 
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solution with T, = 140°C and 
100°C (line I) to 140°C (line 

Gr = 2 X 10'. Isotherms 
1 I) with equal intervals 
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NOMENCLATURE 

a 
Gr = gPATL3/v2 
g 
g 
L 
Na 
n 
ni 

Pe = ULIa 
Pr = vla 

thermal difksivity 
Grashoff number 
gravity acceleration vector 
gravity acceleration 
reference value of length 
interpolation function 
time step 
ith component of unit 
normal vector 
Peclet number 
Prandtl number 

P 
9i 

Ra=Gr*Pr  
Re = ULlv 
s, sI-s6 

S 

S 
T 
TCX 

pressure deviation 
ith component of heat 
flux 
Rayleigh number 
Reynolds number 
boundaries of analysis 
region 
unit tangential vector 
tangential line element 
temperature deviation 
ambient temperature 
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t time 
U reference value of 

v e 1 o c i t y 
U general vector variable 
V analysis region 
Ui ith component of 

velocity 
&( i  = 1,2) ith component of co- 

ordinates 

a, B, y nodes 
coefficient of volumetric expansion 

AT reference value of temperature 
difference 

At time step 
8 non-dimensional temperature devia- 

tion 

K thermal conductivity 
v kinematic viscosity 
p density 
0 null set 
1v' vector potential 
4 stream function 
o vorticity vector 
o vorticity 
(-) weighting function 
( )i ith component of vector (J, or value 

at an inner node 
( ),i spatial derivative a( )/ax, 
( )w value on the wall 
( ) , ( s , ~ )  value at node a@, Y) 
( )* non-dimensional value 
( ') time derivative a( ) / a t  

APPENDIX I. ELIMINATION OF THE BOUNDARY CONDITION OF 
VORTICITY ON NO-SLIP ISOLATED BOUNDARIES 

In order to avoid the boundary condition of o on no-slip isolated boundaries, we use the 
uniqueness of pressure as follows. On fixed boundaries, (&/at) + (v * V)v vanishes, and the 
non-dimensional form of equation (1) yields 

Vp=--  
Re 

Integration of equation (32) on a boundary gives the pressure difference as 

As 6 p  must be zero on a closed boundary (uniqueness of pressure), we obtain 

f g d s  = f 8(g .s) ds 

(33) 

(34) 

where the property s (V x o) = -awlan (in x - y co-ordinates) was used. Hence, the second 
term of the right hand side of equation (24) is evaluated on an isolated boundary where the 
temperature is constant as 

1 Gr a d a n  ds = - 6 (g . s) ds = 0 
Re2 f 4  

APPENDIX 11. DETAILED DEFINITION OF MATRICES 

The matrices of equations (27), (28) and (29) are defined by the following equations. 

(35) 
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V 

E, = -6, N,vno ds 

Foe =-AM3 

443 

(37) 

(40) 
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